Menooa Avrand

Los Angeles, CA | (818) 688-1064 | menooaavrand@berkeley.edu | menooaavrand.com

EDUCATION

Bachelor of Science in Mechanical Engineering | University of California, Berkeley | GPA: 3.7/4.0

December 2025

Aug 2023 - Present

SKILLS

- CAD: SolidWorks | Fusion 360 | Onshape | Autodesk Inventor | AutoCAD •
- Design & Fabrication: SLA & FDM 3D Printing | CNC Router, Lathe, Mill | Plasma Cutting | Laser Cutting
- Software & Others: MATLAB | Python | FEA | G-code | Arduino | IoT | Simulink | Confluence & Jira

EXPERIENCE

UC Berkeley CalSol | Lead Steering Engineer

- Led a team of seven engineers in the end-to-end development of the steering system for the new 11thgeneration vehicle while also maintaining and working on previous-generation cars, overseeing design, analysis, and integration.
- Engineered a stability analysis script, facilitating multidisciplinary communication with other sub-teams to ensure design cohesion. Finalized critical vehicle dimensions, integrating constraints from aerodynamics, chassis, and suspension teams to maintain regulatory compliance and optimize overall performance.
- Designed and tested a high-strength array prop rod mechanism for solar array tilting, sourcing hardware, creating GD&T drawings, managing manufacturing, and conducting assembly/testing.

Industrial District Green | Mechanical Engineer Consultant Internship

Conducted research using GIS & NPMS to analyze civil and substructure obstacles and automated the tree selection process for developers in the Los Angeles Industrial District

PROJECTS

Autonomous Fire Suppression Robot (SolidWorks, FEA, IoT, FDM Printing)

- Designed and developed π Ro-Bot, an autonomous fire suppression system with infrared sensing, real-time positioning, and remote operation, leading the electrical system design, including circuitry, power distribution, and microcontroller integration for seamless sensor-actuator communication.
- Currently leading manufacturing, assembly, and system integration, validating mechanical-electrical • interfacing and optimizing fire suppression accuracy through closed-loop feedback control.

Thermal Paste Performance (SolidWorks, GD&T, IoT/Sensors, MATLAB, Mill)

- Designed and conducted a controlled experiment to evaluate thermal paste conductivity using custom aluminum ٠ blocks, K-type thermocouples, and ESP32-based data acquisition.
- Analyzed temperature gradients, revealing that the most effective thermal paste reduced thermal resistance by 79% compared to setups without paste and by 51% compared to other industry-standard pastes.

3D Printed Wind Turbine Design and Testing (FEA, SolidWorks, FDM Printing)

- Designed and tested turbine rotor blades and a support tower, achieving 8+ N/mm stiffness while • maintaining a weight below 350g and generating over 2W of power.
- Utilized finite element analysis (FEA) for stiffness simulations and optimized rotor blade profiles using 3D printing prototyping.

Microfluidic Exhaust Valve (SolidWorks, FEA, MUMPS)

Designed a MEMS-based microfluidic valve integrating yoke array of six electro-thermal actuators for precise fluid control, reducing leakage in microscale channels via an electrostatic latching mechanism.

Sep 2022 - Nov 2022

Full Report

Full Report

Full Report